contrasts.py 2.72 KB
Newer Older
1
2
3
4
5
6
7
8
#!/usr/bin/env python
# -*- coding: utf-8 -*-


# TODO import as cv
import cv2
import numpy as np
from .helpers import luminance
9
from copy import deepcopy
10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# subclassing numpy ndarray
# Vorgehen: https://docs.scipy.org/doc/numpy/user/basics.subclassing.html
# resize Probleme https://sourceforge.net/p/numpy/mailman/message/12594801/
# andere ownership Probleme könne angeblich mit out= gelöst werden
class Contrast(np.ndarray):
    """Core class for a color contrast in a movie

       subclasses a numpy array"""
    def __new__(cls, frames, input_array=None):
        obj = input_array
        if type(obj) == np.ndarray:
            obj = np.asarray(input_array, dtype=np.uint8).view(cls).copy()
        else:
            input_array = np.zeros((0), dtype=np.uint8)
            obj = np.asarray(input_array).view(cls).copy()
        obj._frames = frames
        obj._channel = 2
        obj._frm_step = 50
        obj._bins = 16
        obj._threshold = 60000
        obj._save = False
        return obj

    def __array_finalize__(self, obj):
        if obj is None: return
        self._frames = getattr(obj, '_frames', None)
        self._channel = getattr(obj, '_channel', None)
        self._frm_step = getattr(obj, '_frame_step', None)
        self._bins = getattr(obj, '_bins', None)
        self._threshold = getattr(obj, '_threshold', None)
        self._save = getattr(obj, '_save', None)

    def __array_wrap__(self, out_arr, context=None):
        return np.ndarray.__array_wrap__(self, out_arr, context)

    # TODO jetzt ausschließlich mit self numpy rechnen statt mit contrast_points liste
    def hist_vstack(self):
        contrast_points = []
        # pwd list sollte in Frames sein und hier nur durchlaufen werden
        for frm_nr in range(self._frames.start, self._frames.end, self._frm_step):
            pwd = self._frames.folder + self._frames.prefix + str(frm_nr) + '.png'

            img = cv2.imread(pwd)

            if self._channel == 2:
                _img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
                luminances = luminance(_img)
                hist_value, _ = np.histogram(luminances, bins=self._bins, range=(0, 255))

            else:

                img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV_FULL)
                hist_value = cv2.calcHist([img_hsv], [self._channel], None, [16], [0, 256])

            for bin_index, point in enumerate(hist_value):
                if point > self._threshold:
                    contrast_points.append((frm_nr, bin_index, int(point)))

69
        contrast_points = np.asarray(contrast_points, np.uint8)
70
71
72
73
74
        shape = contrast_points.shape
        self.resize(shape, refcheck=False)
        self[:,:] = contrast_points

        return deepcopy(self)  # TODO does not create a new object