contrasts.py 2.96 KB
Newer Older
1
2
3
4
5
6
7
8
#!/usr/bin/env python
# -*- coding: utf-8 -*-


# TODO import as cv
import cv2
import numpy as np
from .helpers import luminance
9
from copy import deepcopy
10

11
12
13
14
# subclassing numpy ndarray
# Vorgehen: https://docs.scipy.org/doc/numpy/user/basics.subclassing.html
# resize Probleme https://sourceforge.net/p/numpy/mailman/message/12594801/
# andere ownership Probleme könne angeblich mit out= gelöst werden
15
16
# "Use __new__ when you need to control the creation of a new instance.
# Use __init__ when you need to control initialization of a new instance."
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
class Contrast(np.ndarray):
    """Core class for a color contrast in a movie

       subclasses a numpy array"""
    def __new__(cls, frames, input_array=None):
        obj = input_array
        if type(obj) == np.ndarray:
            obj = np.asarray(input_array, dtype=np.uint8).view(cls).copy()
        else:
            input_array = np.zeros((0), dtype=np.uint8)
            obj = np.asarray(input_array).view(cls).copy()
        obj._frames = frames
        obj._channel = 2
        obj._frm_step = 50
        obj._bins = 16
        obj._threshold = 60000
        obj._save = False
        return obj

    def __array_finalize__(self, obj):
        if obj is None: return
        self._frames = getattr(obj, '_frames', None)
        self._channel = getattr(obj, '_channel', None)
        self._frm_step = getattr(obj, '_frame_step', None)
        self._bins = getattr(obj, '_bins', None)
        self._threshold = getattr(obj, '_threshold', None)
        self._save = getattr(obj, '_save', None)

    def __array_wrap__(self, out_arr, context=None):
        return np.ndarray.__array_wrap__(self, out_arr, context)

48
49
50
51
52

class LightDark(Contrast):
    def __init__(self, arg):
        super(LightDark, self).__init__()

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
    # TODO jetzt ausschließlich mit self numpy rechnen statt mit contrast_points liste
    def hist_vstack(self):
        contrast_points = []
        # pwd list sollte in Frames sein und hier nur durchlaufen werden
        for frm_nr in range(self._frames.start, self._frames.end, self._frm_step):
            pwd = self._frames.folder + self._frames.prefix + str(frm_nr) + '.png'

            img = cv2.imread(pwd)

            if self._channel == 2:
                _img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
                luminances = luminance(_img)
                hist_value, _ = np.histogram(luminances, bins=self._bins, range=(0, 255))

            else:

                img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV_FULL)
                hist_value = cv2.calcHist([img_hsv], [self._channel], None, [16], [0, 256])

            for bin_index, point in enumerate(hist_value):
                if point > self._threshold:
                    contrast_points.append((frm_nr, bin_index, int(point)))

76
        contrast_points = np.asarray(contrast_points, np.uint8)
77
78
        shape = contrast_points.shape
        self.resize(shape, refcheck=False)
79
        self[:, :] = contrast_points
80
81

        return deepcopy(self)  # TODO does not create a new object